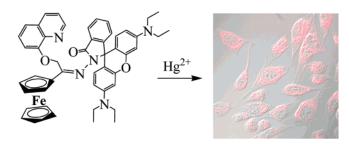
2007 Vol. 9, No. 23 4729–4732

Multisignaling Optical-Electrochemical Sensor for Hg²⁺ Based on a Rhodamine Derivative with a Ferrocene Unit


Hong Yang, Zhiguo Zhou, Kewei Huang, Mengxiao Yu, Fuyou Li,* Tao Yi, and Chunhui Huang*

Department of Chemistry & Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China

fyli@fudan.edu.cn; chhuang@pku.edu.cn

Received August 17, 2007

ABSTRACT

A new multisignaling sensor based on rhodamine B with a ferrocene substituent (1) has been synthesized and has been shown to display extreme selectivity for Hg^{2+} over other metal ions. Multisignaling changes are observed through UV/vis absorption, fluorescence emission, and electrochemical measurements. Furthermore, by means of confocal laser scanning microscopy experiments, it is demonstrated that 1 can be used as a fluorescent probe for monitoring Hg^{2+} in living cells.

Mercury, one of the most dangerous and ubiquitous of pollutants, 1 causes serious environmental and health problems because it can easily pass through skin, respiratory, and gastrointestinal tissues into the human body, where it damages the central nervous and endocrine systems. 2 Therefore, it is important to explore new methods for analyzing Hg²⁺ in vitro and in vivo. In the past few years, a number of Hg²⁺-selective sensors have been devised by utilizing electrochemical, 3 chromogenic, 4 and fluorogenic 5 properties as output signals. The majority of the work on such Hg²⁺-selective chemosensors has hitherto been focused on the development of individual optical signaling sensors, whereas there have been few reports concerning multichannel chemo-

sensors for Hg^{2+} that are capable of both optical and electrochemical sensing.^{6,7} Veciana et al. reported that two

(4) For recent examples, see: (a) Fu, Y. Y.; Li, H. X.; Hu, W. P. Eur.

<sup>J. Org. Chem. 2007, 2459-2463. (b) Tatay, S.; Gavina, P.; Coronado, E.; Palomares, E. Org. Lett. 2006, 8, 3857-3860. (c) Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. Angew. Chem., Int. Ed. 2005, 44, 4405-4407. (d) Cheng, Y. F.; Zhao, D. T.; Zhang, M.; Liu, Z. Q.; Zhou, Y. F.; Shu, T. M.; Li, F. Y.; Yi, T.; Huang, C. H. Tetrahedron Lett. 2006, 47, 6413-6416.
(5) For recent examples, see: (a) Nolan, E. M.; Lippard, S. J. J. Am.</sup>

⁽a) Pol Tecent examples, see: (a) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 5910—5918. (b) Kim, J. S.; Choi, M. G.; Song, C.; No, K. T.; Ahn, S.; Chang, S.-K. Org. Lett. 2007, 9, 1129—1132. (c) Coskun, A.; Yilmaz, M. D.; Akkaya, E. U. Org. Lett. 2007, 9, 607—609. (d) Huang, C. C.; Chang, H. T. Anal. Chem. 2006, 78, 8332—8338. (e) Zhu, X. J.; Fu, S. T.; Wong, W. K.; Guo, J. P.; Wong, W. Y. Angew. Chem., Int. Ed. 2006, 45, 3150—3154. (f) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474—14475.

^{(6) (}a) Caballero, A.; Martinez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J. J. Am. Chem. Soc., 2005, 127, 15666–15667. (b) Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Soto, J. Tetrahedron Lett. 2004, 45, 1257–1259. (c) Nazeeruddin, M. K.; Di Censo, D.; Humphry-Baker, R.; Gratzel, M. Adv. Funct. Mater. 2006, 16, 189–194.

⁽⁷⁾ Zhao, Q.; Cao, T. Y.; Li, F. Y.; Li, X. H.; Jing, H.; Yi, T.; Huang, C. H. *Organometallics* **2007**, *26*, 2077–2081.

^{(1) (}a) U.S. EPA, Regulatory Impact Analysis of the Clean Air Mercury Rule: *EPA-452/R-05-003*, 2005. (b) Harris, H. H.; Pickering, I. J.; George, G. N. *Science* **2003**, *301*, 1203—1203.

⁽²⁾ Gutknecht. J. J. Membr. Biol. 1981, 61, 61-66.

⁽³⁾ Lloris, J. M.; Martinez-Manez, R.; Padilla-Tosta, M. E.; Pardo, T.; Soto, J.; Beer, P. D.; Cadman, J.; Smith, D. K. *J. Chem. Soc., Dalton Trans.* **1999**, 2359–2370.

new sensors that operated through two different channels exhibited higher sensitivity and selectivity for Hg2+ in aqueous environments.^{6a} Recently, we reported that a phosphorescent iridium(III) complex, Ir(btp)2(acac), could be used as a multisignaling chemosensor for Hg²⁺, exhibiting suitable absorption, phosphorescence emission, and electrochemical properties.7 However, such Hg2+ chemosensors are not suitable for monitoring intracellular Hg²⁺ as a result of their poor solubility in aqueous medium, especially in buffer solutions. We became interested in developing a multisignaling sensor for the in vitro monitoring of Hg²⁺. In this regard, fluorescence bioimaging is well suited to meet the need for a highly sensitive, high-speed spatial analysis of cells. The principal challenge to achieving this goal was to develop a fluorescent probe that exhibits increased visible fluorescence emission upon the addition of Hg²⁺ over other metal cations.

Rhodamine-based dyes are excellent candidates for the construction of an OFF/ON-type fluorescent probe due to their excellent spectroscopic properties of large molar extinction coefficients, high fluorescence quantum yields, and visible wavelength excitation. Several rhodamine-based fluorescent chemosensors, for Cu²⁺, 9 Pb²⁺, 10 Fe³⁺, 11,12 and Hg²⁺,^{13,14} have recently been reported. Very recently, two rhodamine derivatives have been successfully fabricated as fluorescent probes for monitoring Fe^{3+ 12} and Hg^{2+ 14} in living cells. In the present case, our strategy for designing a multichannel molecular system has been to incorporate a reversible redox-active ferrocenyl group into the rhodamine fluorophore to form 1 (Scheme 1). To improve the com-

Scheme 1. Chemical Structure of 1 and 2

plexation ability toward Hg²⁺, 8-hydroxyquinoline was also introduced into 1 as a coordinating site. 15 As expected, upon addition of Hg²⁺, 1 showed a significant switching-on of a

fluorescent response and changes in its electrochemical properties. Furthermore, confocal laser scanning microscopy (CLSM) experiments demonstrated that 1 could be used as a fluorescent probe for Hg²⁺ in living cells.

Sensor 1 was synthesized by a condensation reaction between an intermediate product, 1-ferrocene-2-(quinolin-8-yloxy)ethanone, and the amino group of rhodamine B hydrozide⁹ in a yield of 75%. The structure of 1 was confirmed by ¹H NMR, ¹³C NMR, and MS data (Supporting Information).

An optimized ethanol/HEPES buffer (1:1, v/v, pH 7.2) solution was selected for the spectroscopic investigations. The UV/visible spectrum of 1 (20 μ M) shows only a very weak band above 500 nm, which is ascribed to its spirolactam form predominating in solution. The characteristic peak at $\delta = 67.99$ ppm in the ¹³C NMR spectrum of 1 (Supporting Information) also supports this conclusion. Upon addition of Hg²⁺ to a solution of **1**, the solution turned from colorless to pink (Figure 1), and the absorbance was significantly

Figure 1. Photos of color changes (a) and fluorescent responses (b) of 1 (20 μ M) upon addition of 100 μ M different metal ions in ethanol/HEPES buffer (1:1, v/v, pH 7.2) solutions ($\lambda_{ex} = 365$ nm).

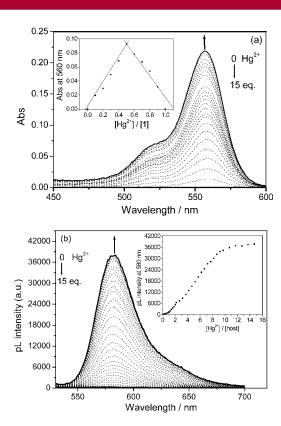
enhanced with a new peak appearing at around 560 nm (Figure 2a), clearly suggesting the formation of the ringopened amide form of 1 as a result of Hg²⁺ binding.¹⁰ The association constant for Hg^{2+} was estimated to be 3.7×10^3 M^{−1} in buffer solutions on the basis of nonlinear fitting of the titration curve assuming 1:1 stoichiometry. This binding mode was also supported by a Job plot (Figure 2a inset).

As expected, 1 shows an obvious change in its reversible ferrocene/ferricinium redox cycles. Differential pulse voltammetric (DPV) curves of 1 were recorded in ethanol solution containing 0.1 M n-tetrabutylammonium hexafluorophosphate (n-Bu₄NPF₆) as supporting electrolyte in the

4730 Org. Lett., Vol. 9, No. 23, 2007

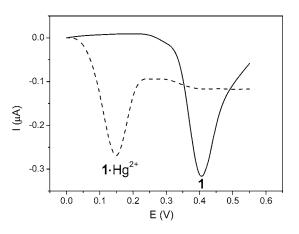
⁽⁸⁾ For recent examples, see: (a) Zhang, M.; Yu, M. X.; Li, F. Y.; Zhu, M. W.; Li, M. Y.; Gao, Y. H.; Li, L.; Liu, Z. Q.; Zhang, J. P.; Zhang, D. Q.; Yi, T.; Huang, C. H. *J. Am. Chem. Soc.* **2007**, *129*, 10322–10323. (b) Yong, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J. *Angew. Chem.*, Int. Ed. 2007, 45, 6658-6661. (c) Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 3684-3685. (d) Yang, D.; Wang, H. L.; Sun, Z. N.; Chung, N. W.; Shen, J. G. *J. Am. Chem. Soc.* **2006**, *128*, 6004–6005. (e) Lim, N. C.; Freake, H. C.; Brückner, C. *Chem.—Eur. J.* **2005**, *11*, 38–49 and some references therein.

^{(9) (}a) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386-7387. (b) Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8. 2863-2866


⁽¹⁰⁾ Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107-10111.

⁽¹¹⁾ Xiang, Y.; Tong, A. *Org. Lett.* **2006**, *8*, 1549–1552. (12) Zhang, M.; Gao, Y. H.; Yu, M. X.; Li, F. Y.; Li, L.; Zhu, M. W.; Zhang, J. P.; Yi, T.; Huang, C. H. Tetrahedron Lett. 2007, 21, 3709-3712.

^{(13) (}a) Wu, J. S.; Hwang, I. C.; Kim, K. S.; Kim, J. S. Org. Lett. 2007, 9, 907–910. (b) Wu, D.; Huang, W.; Duan, C.; Lin, Z.; Meng, Q. *Inorg. Chem.* **2007**, *46*, 1538–1540. (c) Lee, M. H.; Wu, J. S.; Lee, J. W.; Jung, J. H.; Kim, J. S. Org . Lett. 2007, 9, 2501-2504. (d) Song, K. C.; Kim, J. S.; Park, S. M.; Chung, K. C.; Ahn, S.; Chang, S. K. Org. Lett. 2006, 8, 3413-3416. (e) Zheng, H.; Qian, Z. H.; Xu, L.; Yuan, F. F.; Lan, L. D.; Xu, J. G. Org. Lett. 2006, 8, 859–861. (f) Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760-16761.


⁽¹⁴⁾ Ko, S. K.; Yang, Y. K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006,

⁽¹⁵⁾ Zhang, H.; Han, L. F.; Zachariasse, K. A.; Jiang, Y. B. Org. Lett. **2005**, 7, 4217-4220.

Figure 2. Changes in absorption (a) and fluorescence emission (b) spectra of **1** (20 μ M) in ethanol/HEPES buffer (1:1, v/v, pH 7.2) solutions with various amounts of Hg²⁺ ions (0–15 equiv) ($\lambda_{\rm ex} = 520$ nm). Each spectrum was acquired 2 min after Hg²⁺ addition. Inset (a): Job's plots of the complexation between **1** and Hg²⁺. Total concentration of **1** + Hg²⁺ was kept constant at 10 μ M. Inset (b): Fluorescence titration profile at 580 nm versus 1 equiv of Hg(II) in solution for **1**.

absence and presence of $\mathrm{Hg^{2+}}$. As shown in Figure 3, upon addition of $\mathrm{Hg^{2+}}$, a clear evolution of the oxidation peak ($E_{1/2}$) versus decamethylferrocene was observed from 0.40 to 0.15 V.

Figure 3. DPV of **1** (100 μ M) in ethanol solution in the absence and presence of 1.3 equiv of Hg²⁺ with n-Bu₄NPF₆ as supporting electrolyte.

The shift in redox potential between the complex $1 \cdot \text{Hg}^{2+}$ and the neutral ligand ($\Delta E_{1/2} = 250 \text{ mV}$) is indicative of a remarkably large value for the equilibrium constant for Hg^{2+} cation binding by the receptor 1.16

The complexation of Hg²⁺ by **1** was also investigated by means of fluorescence titration in ethanol/HEPES buffer (1:1, v/v, pH 7.2). Upon addition of Hg²⁺, a new emission band of **1** showing a maximum at 580 nm appeared (Figure 2b). Fluorescence titration profile at 580 nm versus 1 equiv of Hg(II) in solution for **1** is shown in Figure 2b inset. In the presence of 15 equiv of Hg²⁺, the mixture showed an intense red fluorescence (Figure 1) with a quantum yield of 0.15, and an approximately 105-fold enhancement in the fluorescence intensity at 580 nm was estimated. This may be ascribed to the delocalized xanthene moiety of the rhodamine group. The introduction of a ferrocenyl group does not influence the typical emission of the rhodamine fluorophore, lending support to the rationality of our design strategy.

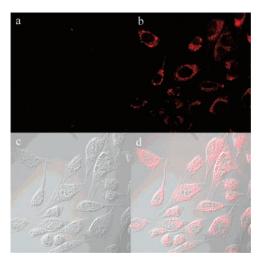
For a chemical sensor to be widely employed in the detection of specific analytes, the reversibility is an important aspect. In light of strong binding ability of the iodide anion (I^-) toward Hg^{2+} ,¹⁷ the reversibility of the system was investigated by introduction of I^- . Upon addition of 20 equiv of KI, the color of the mixture of 1 (20 μ M) and Hg^{2+} (15 equiv) changed from pink to almost colorless, and \sim 96% of fluorescent emission intensity of the system was quenched (Figure S3, Supporting Information) indicating that the anion I^- replaced the receptor 1 to coordinate Hg^{2+} . Thus, reversible response toward Hg^{2+} implies that 1 is a chemosensor not a chemodosimeter of Hg^{2+} .

To obtain an excellent chemosensor, high selectivity is a matter of necessity. In the present work, studies of selective coordination of cations of **1** by means of fluorescence spectroscopy were then extended to related heavy, transition, and main group metal ions. Only the addition of Hg²⁺ resulted in a prominent fluorescent change in fluorescence, whereas only very weak variations of fluorescent spectra of **1** were observed upon the addition of excesses of other metal ions such as Ag⁺, Cr³⁺, Cu²⁺, Ni²⁺, Ca²⁺, Mg²⁺, Fe²⁺, Na⁺, Zn²⁺, Cd²⁺, Al³⁺, Mn²⁺, Pb²⁺, and Co²⁺ (Figure S6, Supporting Information).

We also investigated the time course of the response of **1** to 15 equiv of Hg²⁺ in ethanol/HEPES buffer (1:1, v/v, pH 7.2). We found that the interaction of **1** with Hg²⁺ was completed in less than 2 min. Thus, this system might be used for the real-time monitoring of Hg²⁺ in cells and organisms. To verify the binding sites for Hg²⁺ in **1**, a control molecule **2** (Scheme 1) was synthesized. Upon addition of 15 equiv of Hg²⁺, no obvious variation in the absorbance at 560 nm was observed even over a period of 2 h, indicating a lack of interaction between **2** and Hg²⁺ (Figure S7, Supporting Information). These observations show that the 8-hydroxyquinoline moiety in **1** plays a key role in the metal

Org. Lett., Vol. 9, No. 23, 2007

⁽¹⁶⁾ Caballero, A.; Tarraga, A.; Velasco, M. D.; Espinosa, A.; Molina, P. *Org. Lett.* **2005**, *7*, 3171–3174.


⁽¹⁷⁾ Coronado, E.; Galan-Mascaros, J. R.; Marti-Gastaldo, C.; Palomares, E.; Durrant, J. R.; Vilar, R.; Gratzel, M.; Nazeeruddin, Md. K. *J. Am. Chem. Soc.* **2005**, *127*, 12351–12356.

binding. It is clearly evident that the carbonyl O, imono N, and quinoline N, O atoms all participate in the coordination of Hg^{2+} (Scheme 2).

Scheme 2. Possible Proposed Binding Mode of 1 with Hg²⁺

Further fluorescent response to Hg²⁺ for 1 with a low concentration of 5 μ M could be performed in the ethanol/ PBS (1:49, v/v) solution (Supporting Information). Owing to its favorable spectroscopic properties and the rapid kinetics of the response to Hg²⁺, 1 should be ideally suited for fluorescence imaging in living cells. As determined by laser scanning confocal microscopy, staining Caov-3 ovarian carcinoma cells with a 5 μ M solution of 1 in ethanol/PBS (1:49, v/v) buffer for 10 min at 25 °C led to very weak intracellular fluorescence (Figure 4a). The cells were then supplemented with $10 \,\mu\text{M} \, \text{Hg}(\text{NO}_3)_2$ in the growth medium for 2.5 h at 37 °C and loaded with 1 under the same conditions, whereupon a significant increase in the fluorescence from the intracellular area was observed (Figure 4b). Bright-field measurements after treatment with Hg²⁺ and 1 confirmed that the cells were viable throughout the imaging experiments (Figure 4c). As depicted in Figure 4d, the overlay of fluorescence and bright-field images reveals that the fluorescence signals are localized in the perinuclear area of the cytosol, indicating a subcellular distribution of Hg²⁺. These results demonstrate that 1 might be used for detecting Hg²⁺ within biological samples.

In summary, we have presented a highly selective and multisignaling optical-electrochemical chemosensor for Hg²⁺ based on a rhodamine dye bearing both a ferrocenyl group and an 8-hydroxyquinoline moiety. The structural features of the rhodamine and ferrocene moieties in this probe play

Figure 4. Confocal fluorescence and bright-field images of Caov-3 cells. (a) Cells stained with 5 μ M solution of **1** in ethanol/PBS (1:49, v/v) buffer for 10 min at 25 °C ($\lambda_{ex} = 515$ nm). (b) Hg-(NO₃)₂ supplemented cells loaded with 5 μ M **1** for 10 min at 25 °C. (c) Bright-field image of cells shown in panel b. The overlay image of b and c is shown in d.

very important roles in the design of the multisignaling chemosensor. Confocal laser scanning microscopy experiments have shown that 1 can be used to detect Hg²⁺ in living cells and map its subcellular distration. The results provide a useful design strategy for the synthesis and application of new fluorescent sensors for other transition metal ions in living cells.

Acknowledgment. The authors are thankful for the financial support from NSFC (20490210 and 20501006), NHTPC (2006AA03Z318), NCET-06-0353, Shanghai Science and Technology Community (05DJ14004 and 06QH-14002). We also thank Prof. C. J. Xu and Dr. X. Y. Zhang for their helpful discussion.

Supporting Information Available: Synthetic details, NMR spectra, and additional spectra. This material is available free of charge via the Internet at http://pubs.acs.org. OL7020143

4732 Org. Lett., Vol. 9, No. 23, 2007